Vishnu Boddeti bio photo

Vishnu Boddeti

Assistant Professor

Email Twitter Google Scholar LinkedIn Github Lab Webpage

A list is also available online.

2020

  1. Lu, Z., Sreekumar, G., Goodman, E., Banzhaf, W., Deb, K., & Boddeti, V. N. (2020). Neural Architecture Transfer. ArXiv Preprint ArXiv:2005.05859.
  2. Joshua Engelsma, A. J., & Boddeti, V. N. (2020). HERS: Homomorphically Encrypted Representation Search. ArXiv Preprint ArXiv:2003.12197.
  3. Zhichao Lu, K. D., & Boddeti, V. N. (2020). MUXConv: Information Multiplexing in Convolutional Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2019

  1. Lu, Z., Whalen, I., Dhebar, Y., Deb, K., Goodman, E., Banzhaf, W., & Boddeti, V. N. (2019). Multi-Criterion Evolutionary Design of Deep Convolutional Neural Networks . ArXiv Preprint ArXiv:1912.01369.
  2. Bashir Sadeghi, R. Y., & Boddeti, V. N. (2019). On the Global Optima of Kernelized Adversarial Representation Learning . In IEEE Conference on Computer Vision (ICCV).
  3. Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., & Banzhaf, W. (2019). NSGA-NET: A Multi-Objective Genetic Algorithm for Neural Architecture Search. In Genetic and Evolutionary Computation Conference (GECCO).
  4. Gong, S., Boddeti, V. N., & Jain, A. K. (2019). On the Intrinsic Dimensionality of Image Representations. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  5. Roy, P. C., & Boddeti, V. N. (2019). Mitigating Information Leakage in Image Representations: A Maximum Entropy Approach. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  6. Sadeghi, B., Yu, R., & Boddeti, V. N. (2019). Constrained Sampling: Optimum Reconstruction in Subspace with Minimax Regret Constraint. IEEE Transactions on Signal Processing.

2018

  1. Dey, R., Juefei-Xu, F., Boddeti, V. N., & Savvides, M. (2018). RankGAN: A Maximum Margin Ranking GAN for Generating Faces. In Asian Conference on Computer Vision (ACCV).
  2. Boddeti, V. N. (2018). Secure Face Matching Using Fully Homomorphic Encryption. IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS).
  3. Juefei-Xu, F., Boddeti, V. N., & Savvides, M. (2018). Perturbative Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  4. Yoo, D., Fan, H., Boddeti, V. N., & Kitani, K. M. (2018). Efficient K-Shot Learning with Regularized Deep Networks. AAAI Conference on Artificial Intelligence (AAAI).
  5. Hattori, H., Lee, N., Boddeti, V. N., Beainy, F., Kitani, K. M., & Kanade, T. (2018). Synthesizing a Scene-Specific Pedestrian Detector and Pose Estimator for Static Video Surveillance. International Journal of Computer Vision (IJCV).
  6. Smereka, J. M., Boddeti, V. N., & Kumar, B. V. K. V. (2018). Stacked Correlation Filters. In M. Vatsa, R. Singh, & A. Majumdar (Eds.), Deep Learning in Biometrics (pp. 175–195). CRC Press.

2017

  1. Gong, S., Boddeti, V. N., & Jain, A. K. (2017). On the Capacity of Face Representation. ArXiv Preprint ArXiv:1709.10433.
  2. Boddeti, V. N., Roh, M.-C., Shin, J., Oguri, T., & Kanade, T. (2017). Face alignment robust to pose, expressions and occlusions. ArXiv Preprint ArXiv:1707.05938.
  3. Pal, D. K., Boddeti, V., & Savvides, M. (2017). Emergence of Selective Invariance in Hierarchical Feed Forward Networks. ArXiv Preprint ArXiv:1701.08837.
  4. Funakoshi, R., Boddeti, V. N., Kitani, K., & Koike, H. (2017). Video segmentation and stabilization for BallCam. In Augmented Human International Conference. ACM.
  5. Yonetani, R., Boddeti, V. N., Kitani, K. M., & Sato, Y. (2017). Privacy-preserving visual learning using doubly permuted homomorphic encryption. In IEEE International Conference on Computer Vision (ICCV).
  6. Juefei-Xu, F., Boddeti, V. N., & Savvides, M. (2017). Local Binary Convolutional Neural Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2016

  1. Funakoshi, R., Boddeti, V. N., Kitani, K., & Koike, H. (2016). Activity-Aware Video Stabilization for BallCam. In Annual Symposium on User Interface Software and Technology (UIST) (pp. 197–198). ACM.
  2. Zhang, Y., Boddeti, V. N., & Kitani, K. M. (2016). Gesture-based Bootstrapping for Egocentric Hand Segmentation. ArXiv Preprint ArXiv:1612.02889.
  3. Shen, J., Vesdapunt, N., Boddeti, V. N., & Kitani, K. M. (2016). In Teacher We Trust: Learning Compressed Models for Pedestrian Detection. ArXiv Preprint ArXiv:1612.00478.
  4. Smereka, J. M., Boddeti, V. N., Kumar, B. V. K. V., & Rodriguez, A. (2016). Stacked correlation filters for biometric verification. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2104–2108).
  5. Kumar, B. V. K. V., Thornton, J., Savvides, M., Boddeti, V. N., & Smereka, J. M. (2016). Application of correlation filters for iris recognition. In K. Bowyer & M. Burge (Eds.), Handbook of Iris Recognition (pp. 211–228). Springer.

2015

  1. Smereka, J. M., Boddeti, V. N., & Kumar, B. V. K. V. (2015). Probabilistic deformation models for challenging periocular image verification. IEEE Transactions on Information Forensics and Security (TIFS), 10(9), 1875–1890.
  2. Fernandez, J. A., Boddeti, V. N., Rodriguez, A., & Kumar, B. V. K. V. (2015). Zero-aliasing correlation filters for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(8), 1702–1715.
  3. Hattori, H., Naresh Boddeti, V., Kitani, K. M., & Kanade, T. (2015). Learning scene-specific pedestrian detectors without real data. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3819–3827).
  4. Zeng, A., Boddeti, V. N., Kitani, K. M., & Kanade, T. (2015). Face Alignment Refinement. In IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 162–169).

2014

  1. Kumar, B. V. K. V., Fernandez, J. A., Rodriguez, A., & Boddeti, V. N. (2014). Recent advances in correlation filter theory and application. In Optical Pattern Recognition XXV (Vol. 9094). International Society for Optics and Photonics.
  2. Movshovitz-Attias, Y., Sheikh, Y., Boddeti, V. N., & Wei, Z. (2014). 3D Pose-by-Detection of Vehicles via Discriminatively Reduced Ensembles of Correlation Filters. In British Machine Vision Conference (BMVC).
  3. Boddeti, V. N., & Kumar, B. V. K. (2014). Maximum margin vector correlation filter. ArXiv Preprint ArXiv:1404.6031.

2013

  1. Kumar, B. V. K. V., Boddeti, V. N., Smereka, J. M., Thornton, J., & Savvides, M. (2013). Application of Bayesian Graphical Models to Iris Recognition. In C. R. Rao & V. Govindaraju (Eds.), Handbook of Statistics (pp. 381–398). Elsevier.
  2. Jillela, R., Ross, A. A., Boddeti, V. N., Kumar, B. V. K. V., Hu, X., Plemmons, R., & Pauca, P. (2013). Iris segmentation for challenging periocular images. In K. Bowyer & M. Burge (Eds.), Handbook of Iris Recognition (pp. 281–308). Springer.
  3. Siena, S., Boddeti, V. N., & Kumar, B. V. K. V. (2013). Maximum-margin coupled mappings for cross-domain matching. In IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).
  4. Boddeti, V. N., & Kumar, B. V. K. V. (2013). A framework for binding and retrieving class-specific information to and from image patterns using correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 35(9), 2064–2077.
  5. Boddeti, V. N., Kanade, T., & Vijaya Kumar, B. V. K. (2013). Correlation filters for object alignment. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 2291–2298).
  6. Rodriguez, A., Boddeti, V. N., Kumar, B. V. K. V., & Mahalanobis, A. (2013). Maximum margin correlation filter: A new approach for localization and classification. IEEE Transactions on Image Processing (TIP), 22(2), 631–643.
  7. Monwar, M. M., Vijayakumar, B. V. K., Boddeti, V. N., & Smereka, J. M. (2013). Rank information fusion for challenging ocular image recognition. In IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC) (pp. 175–181). IEEE.

2012

  1. Siena, S., Boddeti, V. N., & Kumar, B. V. K. V. (2012). Coupled marginal fisher analysis for low-resolution face recognition. In European Conference on Computer Vision (ECCV) (pp. 240–249).
  2. Shafer, I., Ren, K., Boddeti, V. N., Abe, Y., Ganger, G. R., & Faloutsos, C. (2012). Rainmon: an integrated approach to mining bursty timeseries monitoring data. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (pp. 1158–1166). ACM.
  3. Ross, A., Jillela, R., Smereka, J. M., Boddeti, V. N., Kumar, B. V. K. V., Barnard, R., … Plemmons, R. (2012). Matching highly non-ideal ocular images: An information fusion approach. In International Conference on Biometrics (ICB) (pp. 446–453).

Before 2012

  1. Boddeti, V. N., Kumar, B. V. K. V., & Ramkumar, K. (2011). Improved iris segmentation based on local texture statistics. In Asilomar Conference on Signals, Systems and Computers (ACSSC) (pp. 2147–2151).
  2. Boddeti, V. N., Smereka, J. M., & Kumar, B. V. K. V. (2011). A comparative evaluation of iris and ocular recognition methods on challenging ocular images. In International Joint Conference on Biometrics (IJCB).
  3. Boddeti, V. N., & Kumar, B. V. K. V. (2010). Extended-depth-of-field iris recognition using unrestored wavefront-coded imagery. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans (SMC-A), 40(3), 495–508.
  4. Boddeti, V. N., Su, F., & Kumar, B. V. K. V. (2009). A biometric key-binding and template protection framework using correlation filters. In International Conference on Biometrics (ICB) (pp. 919–929).
  5. Boddeti, V. N., & Kumar, B. V. K. V. (2008). Extended depth of field iris recognition with correlation filters. In IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).